Abstract
Reversible catalytic reactions operate under thermodynamic control, and thus, establishing a selective catalytic system poses a considerable challenge. Herein, we report a reversible transfer hydrocyanation protocol that exhibits high selectivity for the thermodynamically less favorable branched isomer. Selectivity is achieved by exploiting the lower barrier for C-CN oxidative addition and reductive elimination at benzylic positions in the absence of a cocatalytic Lewis acid. Through the design of a novel type of HCN donor, a practical, branched-selective, HCN-free transfer hydrocyanation was realized. The synthetically useful resolution of a mixture of branched and linear nitrile isomers was also demonstrated to underline the value of reversible and selective transfer reactions. In a broader context, this work demonstrates that high kinetic selectivity can be achieved in reversible transfer reactions, thus opening new horizons for their synthetic applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.