Abstract
Convolutional neural networks (CNNs) are revolutionizing a variety of machine learning tasks, but they present significant computational challenges. Recently, FPGA-based accelerators have been proposed to improve the speed and efficiency of CNNs. Current approaches construct an accelerator optimized to maximize the overall throughput of iteratively computing the CNN layers. However, this approach leads to dynamic resource underutilization because the same accelerator is used to compute CNN layers of radically varying dimensions. We present a new CNN accelerator design that improves the dynamic resource utilization. Using the same FPGA resources, we build multiple accelerators, each specialized for specific CNN layers. Our design achieves 1.3× higher throughput than the state of the art when evaluating the convolutional layers of the popular AlexNet CNN on a Xilinx Virtex-7 FPGA.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.