Abstract

Nutrient stress accompanies several stages of tumor progression, including metastasis formation. Metabolic reprogramming is a hallmark of cancer, and it has been associated with stress tolerance and anchorage-independent cell survival. Adaptive responses are required to support cancer cell survival under these conditions. In this issue of Cancer Research, Nam and colleagues showed that the extracellular matrix (ECM) receptor integrin β3 was upregulated in lung cancer cells in response to nutrient starvation, resulting in increased cell survival that was independent from ECM binding. Delving into the molecular mechanisms responsible for this, the authors found that integrin β3 promoted glutamine metabolism and oxidative phosphorylation (OXPHOS) by activating a Src/AMPK/PGC1α signaling pathway. Importantly, in vivo experiments confirmed that OXPHOS inhibition suppressed tumor initiation in an orthotopic model of lung cancer, while β3 knockout completely abrogated tumor initiation. These observations indicate that targeting signaling pathways downstream of αvβ3 could represent a promising therapeutic avenue to prevent lung cancer progression and metastasis. See related article by Nam et al., p. 1630.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call