Abstract
Community detection is an important graph (network) analysis kernel used for discovering functional units and organization of a graph. Louvain method is an efficient algorithm for discovering communities. However, sequential Louvain method does not scale to the emerging large-scale network data. Parallel algorithms designed for modern high performance computing platforms are necessary to process such network big data. Although there are several shared memory based parallel algorithms for Louvain method, those do not scale to a large number of cores and to large networks. One existing Message Passing Interface (MPI) based distributed memory parallel implementation of Louvain algorithm has shown scalability to only 16 processors. In this work, first, we design a shared memory based algorithm using Open MultiProcessing (OpenMP), which shows a 4-fold speedup but is only limited to the physical cores available to our system. Our second algorithm is an MPI-based distributed memory parallel algorithm that scales to a moderate number of processors. We then implement a hybrid algorithm combining the merits from both shared and distributed memory-based approaches. Finally, we incorporate a parallel load balancing scheme, which leads to our final algorithm DPLAL (Distributed Parallel Louvain Algorithm with Load-balancing). DPLAL overcomes the performance bottleneck of the previous algorithms with improved load balancing. We present a comparative analysis of these parallel implementations of Louvain methods using several large real-world networks. DPLAL shows around 12-fold speedup and scales to a larger number of processors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.