Abstract

Unencapsulated organic solar cells are prone to severe performance losses in the presence of moisture. Accelerated damp heat (85 °C/85% RH) studies are presented and it is shown that the hygroscopic hole‐transporting PEDOT:PSS layer is the origin of device failure in the case of prototypical inverted solar cells. Complementary measurements unveil that under these conditions a decreased PEDOT:PSS work function along with areas of reduced electrical contact between active layer and hole‐transport layer are the main factors for device degradation rather than a chemical reaction of water with the active layer. Replacements for PEDOT:PSS are explored and it is found that tungsten oxide (WO3) or phosphomolybdic acid (PMA)—materials that can be processed from benign solvents at room temperature—yields comparable performance as PEDOT:PSS and enhances the resilience of solar cells under damp heat. The stability trend follows the order PEDOT:PSS << WO3 < PMA, with PEDOT:PSS‐based devices failing after few minutes, while PMA‐based devices remain nearly pristine over several hours. PMA is thus proposed as a robust, solution‐processable hole extraction layer that can act as a one to one replacement of PEDOT:PSS to achieve organic solar cells with significantly improved longevity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.