Abstract

Configurational and thermal entropy yield identical numerical values for ΔS only when the system's "dimensionless" energy gaps (Δε /kT ) between the accessible quantized energy levels are minimized by temperature to nearly infinitesimal values so that the spreading of energy among the system's microstates becomes effectively classical and equiprobable. The molecular partition function provides the numerical value for the effective number of both accessible states and spatial configurations per molecule, for which this condition is valid at a given temperature. Considering the phenomenon of mixing and standard molar entropy values leads to the conclusion that configurational entropy calculations are significant and thermodynamically valid because of their fundamental connection to the process of random energy re-distributions in a system, via the available modes of molecular motion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.