Abstract
BackgroundMetastatic clear cell renal cell cancer (mccRCC) portends a poor prognosis and urgently requires better clinical tools for prognostication as well as for prediction of response to treatment. Considerable investment in molecular risk stratification has sought to overcome the performance ceiling encountered by methods restricted to traditional clinical parameters. However, replication of results has proven challenging, and intratumoural heterogeneity (ITH) may confound attempts at tissue-based stratification.MethodsWe investigated the influence of confounding ITH on the performance of a novel molecular prognostic model, enabled by pathologist-guided multiregion sampling (n = 183) of geographically separated mccRCC cohorts from the SuMR trial (development, n = 22) and the SCOTRRCC study (validation, n = 22). Tumour protein levels quantified by reverse phase protein array (RPPA) were investigated alongside clinical variables. Regularised wrapper selection identified features for Cox multivariate analysis with overall survival as the primary endpoint.ResultsThe optimal subset of variables in the final stratification model consisted of N-cadherin, EPCAM, Age, mTOR (NEAT). Risk groups from NEAT had a markedly different prognosis in the validation cohort (log-rank p = 7.62 × 10−7; hazard ratio (HR) 37.9, 95% confidence interval 4.1–353.8) and 2-year survival rates (accuracy = 82%, Matthews correlation coefficient = 0.62). Comparisons with established clinico-pathological scores suggest favourable performance for NEAT (Net reclassification improvement 7.1% vs International Metastatic Database Consortium score, 25.4% vs Memorial Sloan Kettering Cancer Center score). Limitations include the relatively small cohorts and associated wide confidence intervals on predictive performance. Our multiregion sampling approach enabled investigation of NEAT validation when limiting the number of samples analysed per tumour, which significantly degraded performance. Indeed, sample selection could change risk group assignment for 64% of patients, and prognostication with one sample per patient performed only slightly better than random expectation (median logHR = 0.109). Low grade tissue was associated with 3.5-fold greater variation in predicted risk than high grade (p = 0.044).ConclusionsThis case study in mccRCC quantitatively demonstrates the critical importance of tumour sampling for the success of molecular biomarker studies research where ITH is a factor. The NEAT model shows promise for mccRCC prognostication and warrants follow-up in larger cohorts. Our work evidences actionable parameters to guide sample collection (tumour coverage, size, grade) to inform the development of reproducible molecular risk stratification methods.
Highlights
Metastatic clear cell renal cell cancer portends a poor prognosis and urgently requires better clinical tools for prognostication as well as for prediction of response to treatment
This case study in Metastatic clear cell renal cell cancer (mccRCC) quantitatively demonstrates the critical importance of tumour sampling for the success of molecular biomarker studies research where intratumoural heterogeneity (ITH) is a factor
Cohort characteristics The two mccRCC cohorts were similar across many characteristics (Table 1), statistically significant differences were identified for Karnofsky performance status, elevated lactate dehydrogenase and age
Summary
Metastatic clear cell renal cell cancer (mccRCC) portends a poor prognosis and urgently requires better clinical tools for prognostication as well as for prediction of response to treatment. Considerable investment in molecular risk stratification has sought to overcome the performance ceiling encountered by methods restricted to traditional clinical parameters. Five-year survival in renal cell cancer (RCC) is approximately 40% overall, 10% in metastatic disease [1, 2]. Current risk stratification of advanced ccRCC uses clinico-pathological scoring systems, for example, the International Metastatic Database Consortium (IMDC) [3] and Memorial Sloan Kettering Cancer Center (MSKCC) [4] scores. Sunitinib is a first-line treatment for metastatic ccRCC (mccRCC), doubling median progression-free survival compared with older immunotherapies such as IL-2 and interferon-α [9, 10]. Improved algorithms are critically needed to guide treatment decisions for current and emerging modalities [6, 7, 13]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.