Abstract

In order to improve the fermentative efficiency of sugar maple hemicellulosic hydrolysates for fuel ethanol production, various methods to mitigate the effects of inhibitory compounds were employed. These methods included detoxification treatments utilizing activated charcoal, anion exchange resin, overliming, and ethyl acetate extraction. Results demonstrated the greatest fermentative improvement of 50% wood hydrolysate (v/v) by Pichia stipitis with activated charcoal treatment. Another method employed to reduce inhibition was an adaptation procedure to produce P. stipitis stains more tolerant of inhibitory compounds. This adaptation resulted in yeast variants capable of improved fermentation of 75% untreated wood hydrolysate (v/v), one of which produced 9.8g/l±0.6 ethanol, whereas the parent strain produced 0.0g/l±0.0 within the first 24h. Adapted strains RS01, RS02, and RS03 were analyzed for glucose and xylose utilization and results demonstrated increased glucose and decreased xylose utilization rates in comparison to the wild type. These changes in carbohydrate utilization may be indicative of detoxification or tolerance activities related to proteins involved in glucose and xylose metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.