Abstract

The high-temperature optical method has been widely used for evaluating structural materials subjected to high temperature. Obtaining high-quality images of a specimen surface in such a harsh environment is detrimental for the accurate measurement of temperature and strain field. However, the high-temperature environment poses many challenges on these measurements, e.g., the large luminance gradient on the sample surface would jeopardize the image quality when using the full-field optical method. In order to overcome this issue, we propose here a simple and effective algorithm to obtain image sequences with serial exposure times. This algorithm incorporates exponentially decreasing exposure times to successfully reduce the disturbance caused by large luminance gradient, as will be shown by the verification on samples tested both in arc wind tunnel and oxy-propane torch flame. In comparison to the images with single exposure time, further experiment carried out on C/SiC sample up to 1100°C shows that image sequences with different exposure times can be effectively obtained by the image fusion technique. The calculation of the deformation and temperature fields using the image sequence method gives more accurate and reasonable results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call