Abstract

Implantable immunoisolation membranes need to possess superior biocompatibility to prohibit the fibrotic deposition that would reduce the nutrient supply and impair the viability/function of the encapsulated cells. Here, electrospun membranes based on thermoplastic polyurethane (TPU) were fabricated to contain microfibers (PU-micro) or nanofibers (PU-nano). The two types of membranes were compared in terms of their interaction with macrophage cells and the host tissues. It was found that the fibrous membranes of different topographies possess distinct material properties: PU-nano caused minimal macrophage responses invitro and invivo and induced only mild foreign body reactions compared to PU-micro membranes. A flat macroencapsulation device was fabricated using PU-nano membranes and its immunoisolation function investigated in subcutaneous transplantation models. The nanofibrous device demonstrated the capability to effectively shield the allografts from the immune attack of the host. Nanotopography may confer biocompatibility to materials and nanofibrous materials warrant further study for development of "invisible" immunoisolation devices for cell transplantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.