Abstract

SummaryThe finite element methods (FEMs) are important techniques in engineering for solving partial differential equations, but they depend heavily on element shape quality for stability and good performance. In this paper, we introduce the Adaptive Extended Stencil Finite Element Method (AES‐FEM) as a means for overcoming this dependence on element shape quality. Our method replaces the traditional basis functions with a set of generalized Lagrange polynomial basis functions, which we construct using local weighted least‐squares approximations. The method preserves the theoretical framework of FEM and allows imposing essential boundary conditions and integrating the stiffness matrix in the same way as the classical FEM. In addition, AES‐FEM can use higher‐degree polynomial basis functions than the classical FEM, while virtually preserving the sparsity pattern of the stiffness matrix. We describe the formulation and implementation of AES‐FEM and analyze its consistency and stability. We present numerical experiments in both 2D and 3D for the Poisson equation and a time‐independent convection–diffusion equation. The numerical results demonstrate that AES‐FEM is more accurate than linear FEM, is also more efficient than linear FEM in terms of error versus runtime, and enables much better stability and faster convergence of iterative solvers than linear FEM over poor‐quality meshes. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call