Abstract

Electroluminescent (EL) nanoclusters holding promise for new-generation cluster light-emitting devices (CLEDs) rapidly emerge. However, slow radiation and serious quenching of cluster emitters largely limit the device performance. Herein, we report two monofunctionalized biphosphine chelated Cu4I4 clusters [DMACDBFDP]2Cu4I4 and [DPACDBFDP]2Cu4I4. The asymmetric modification and electron-donating effect of acridine groups lead to the iodine-to-ligand charge transfer predominant excited states of the clusters, which feature thermally activated delayed fluorescence with markedly improved singlet radiative rate constants and reduced triplet nonradiative rate constants. As consequence, compared to the nonfunctionalized parent cluster, [DPACDBFDP]2Cu4I4 achieves 16-fold increased photoluminescence (81%) and 20-fold increased EL (19.5%) quantum efficiencies. Such new-record efficiencies make CLEDs achieve the state-of-the-art performance of all kinds of EL technologies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.