Abstract
Spectral computed tomography (CT) using photon counting detectors (PCDs) can provide accurate tissue composition measurements by utilizing the energy dependence of x-ray attenuation in different materials. PCDs are especially suited for K-edge imaging, revealing the spatial distribution of select imaging probes through quantitative material decomposition. We report on a prototype spectral micro-CT system with a CZT-based PCD (DxRay, Inc.) that has of , a thickness of 3mm, and four energy thresholds. Due to the PCD's limited size ( ), our system uses a translate-rotate projection acquisition strategy to cover a field of view relevant for preclinical imaging ( ). Projection corrections were implemented to minimize artifacts associated with dead pixels and projection stitching. A sophisticated iterative algorithm was used to reconstruct both phantom and ex vivo mouse data. To achieve preclinically relevant spatial resolution, we trained a convolutional neural network to perform pan-sharpening between low-resolution PCD data ( voxels) and high-resolution energy-integrating detector data ( voxels), recovering a high-resolution estimate of the spectral contrast suitable for material decomposition. Long-term, preclinical spectral CT systems such as ours could serve in the developing field of theranostics (therapy and diagnostics) for cancer research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.