Abstract

AbstractCurrently reported adsorption (hydroxyl or amidoxime) groups must dissociate hydrogen ions to form ─O− units for the coordination with uranyl ions. However, this process suffers a high energy barrier for bond dissociation, leading to the sluggish uptake speed and low adsorption capacity for uranium extraction from natural seawater. Herein, this study proposes a strategy for electrochemical modulation of adsorption sites, which overcomes the chemical dissociation processes of hydrogen ions. Poly‐2,5‐dihydroxy‐1,4‐benzoquinone containing redox carbonyl groups is intercalated into the channels of a covalent organic framework (COF) through in situ cross‐linking of 2,5‐dihydroxy‐1,4‐benzoquinone. Under electrochemical modulation, the C═O groups are transformed into adjacent phenol–oxygen anions to cooperate with the coordination atoms (O and N) on the COF channel for rapid binding of uranyl ions, which gave an absorption rate of 4.2 mg g−1 d−1 (≈3.3 ppb of uranium in natural seawater). Notably, the COF‐based electrodes delivered an average capacity of ≈20.8 mg‐U per g for uranyl ion adsorption during 5 days of extraction, ≈3000 times larger than that of classical tannin‐based adsorbents. The proposed method for preparing electrochemically modulated binding sites is expected to provide guidance for designing high‐efficiency adsorbents in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.