Abstract

Abstract TA is an over-pressurized well in the field development project located Offshore Peninsular Malaysia. Although the well was drilled as a development well, it also had an exploration objective as it was the first to penetrate the over pressured zones across a fault in the TA field. An initial attempt to drill conventionally resulted in severe gain and loss scenarios across the first of three sands 80 m below the 7" casing shoe, primarily due to weak coal formations. After many attempts to control losses, it was decided to plug-abandon the 6" open hole and to temporarily suspend the well due to insufficient operating window to drill ahead. After a year of suspension, a new drilling approach using a statically underbalanced mud weight (MW) in combination with an Automated Managed Pressure Drilling (MPD) system was introduced as the best solution for drilling into the well objectives. During the planning stage, different scenarios were analyzed based on the formation fracture gradient (FG) and pore pressure (PP) estimations. MPD plans were designed based on statically underbalanced mud while drilling, running the liner, and during the cementing job. During drilling, Dynamic Flow Checks (DFC) and Dynamic Formation Integrity Tests (DFIT) were performed using the MPD system to identify and confirm operating window. The target total depth was successfully reached with mud weighted within the narrow 0.35 ppg drilling window (17.8–18.1 ppg). Decision was then made to top kill the well at 1200 m-MDDF with 18.30 ppg mud, providing an overbalanced condition of 85 psi. Open hole logging operations were then successfully executed. The well was then displaced to a 16.30 ppg mud prior to performing Managed Pressure Cementing (MPC). This technical paper aims to discuss all of the MPD - MPC challenges faced and best practices developed during both the planning and execution stages of the program.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.