Abstract

The LiMn2O4/graphite battery was fabricated and its 3 C/10 V overcharge performance was studied. Spinel LiMn2O4 was synthesized by solid-state method and 325680-type size full battery was fabricated. The structure and morphology of the powders were characterized by XRD and SEM technique, respectively. The battery explodes after 3 C/10 V overcharged test, and surface temperature of the battery case arrives at 290 °C in 12 s after exploding. Black air is given out with blast. Carbon, MnO, and Li2CO3 are observed in the exploded powders. The cathode electrode remains spinel structure with 5.0 V charged. Cracks in the cathode electrode particles are detected with the increase of voltage by SEM technique. The 5.0 V charged electrode can decompose into Mn3O4 at 400 °C. It is demonstrated that the decomposition of 5.0 V charged electrode can be promoted and Mn4+ can be deoxidized to Mn2+ by carbon and electrolyte through the simulation of blast process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.