Abstract

Experiments have been conducted to investigate the overall thermal performance of a rectangular channel implemented with an elongated pedestal array. The staggered pedestals were elongated in the spanwise direction in order that the jet flow from between the pedestals impinges at the centre of the pedestals in the downstream row. The average heat transfer coefficient of the pedestal and the local heat transfer coefficient distribution of the bottom channel wall were investigated for different geometrical arrangements. The pressure drop across the pedestal bank was measured. The transient liquid crystal method was used to obtain the local heat transfer coefficient distribution on the bottom channel wall and the lumped capacitance method was used to measure the average heat transfer coefficient of the pedestals in the last two rows of the bank. Five pressure taps were arranged on the centerline of each gap between two pedestal rows to measure the pressure drop. The heat transfer coefficients were measured over the Reynolds number range from 10,000 to 30,000. The minimum flow area to the channel cross-section flow area ratio ranged from 0.149 to 0.333. The effects of pedestal geometry and array distribution were investigated in detail showing the relationship between the pedestal array geometry, heat transfer enhancement and pressure drop. Conclusions were drawn on the effects of geometry and flow conditions on overall thermal performance of the respective channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.