Abstract

Human activities have altered the environmental nitrogen (N) and phosphorus (P) supply from both aspects of overall supply level and relative supply ratio. However, the effects of the two aspects on plant community composition are still not clear. In this study, a field manipulation experiment combining 3 overall nutrient supply levels (Low, Medium and High) and 3 N:P supply ratios (5,1, 15:1 and 45:1) was conducted in a supratidal wetland in the Yellow River Delta from 2015 to 2018. The effects of the two aspects on soil properties, performance of dominant species and plant community diversity were examined. The results showed that the N:P supply ratio and overall supply level both affected the concentration of soil inorganic N and available P, and N:P ratio significantly, while only overall supply level exerted a significant effect on the importance value of the dominant species, species richness and Shannon diversity. There were big gaps in the N and P supply amounts among the treatments that having same overall supply level with different supply ratio, but the plant composition displayed no significant difference among these treatments, which suggested that P may be also very important in affecting plant community composition in the study area. The species richness and the Shannon diversity were negatively correlated with the importance value of Suaeda glauca. With the rise of overall supply level, S. glauca became increasingly dominant and suppressed other species. Compared with the control treatment, the species richness and the Shannon diversity declined significantly only at high supply level (minimum N supply amount of 26.01 g m−2 yr−1), indicated that the supratidal wetland had high resilience to nutrient enrichment. Our results revealed that the N:P supply ratio has little influence on plant composition, compared with overall supply, in relative short-term in the supratidal wetland.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.