Abstract

Micro combustion-based power systems have garnered significant attention owing to their high energy density and portability. This work presents a numerical simulation process for an integrated thermoelectric generator based on micro-combustion, which can track the chemical-thermal-electro energy conversion. The combustion performance, thermal characteristics and energy conversion for the micro-thermoelectric generator (MTEG) system are investigated. A range of equivalence ratios and Reynolds numbers (Re) is examined to provide a detailed analysis. With the increment of equivalence ratio (φ), both the energy output and the open-circuit voltage of the system significantly increase. At high φ, the voltage and energy output exhibit a growth tendency when the Re number increases. Conversely, at low φ, the voltage and energy output decrease at higher Re number. The maximum voltage of 0.264 V is achieved when φ = 1.0 and Re = 1500, while the system delivers an energy output of 1.87 W.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call