Abstract
This article is concerned with the assumption of linear temporal development that is often advanced in structural equation modeling-based longitudinal research. The linearity hypothesis is implemented in particular in the popular intercept-and-slope model as well as in more general models containing it as a component, such as longitudinal structural models with covariates, or models for the study of predictors and correlates of change. In empirical research applications, currently behavioral and social scientists typically evaluate only overall goodness of fit for a considered model. However, this omnibus fit assessment may miss violations of the underlying linearity assumption. To respond to this limitation, the present article discusses a testing procedure for examining the hypothesis of linear growth or decline separately from the widely used overall fit evaluation process. The method is readily utilized with popular latent variable modeling software and is illustrated using a numerical example.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.