Abstract

This paper proposes a control scheme based on an optimal triple phase-shift (TPS) control for dual active bridge (DAB) DC–DC converters to achieve maximum efficiency. This is performed by analyzing, quantifying, and minimizing the total power losses, including the high-frequency transformer (HFT) and primary and secondary power modules of the DAB converter. To analyze the converter, three operating zones were defined according to low, medium, and rated power. To obtain the optimal TPS variables, two optimization techniques were utilized. In local optimization (LO), the offline particle swarm optimization (PSO) method was used, resulting in numerical optimums. This method was used for the low and medium power regions. The Lagrange multiplier (LM) was used for global optimization (GO), resulting in closed-form expressions for rated power. Detailed analyses and experimental results are given to verify the effectiveness of the proposed method. Additionally, obtained results are compared with the traditional single phase-shift (SPS) method, the optimized dual phase-shift (DPS) method, and TPS method with RMS current minimization to better highlight the performance of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.