Abstract
Most methods for creating an indoor thermal environment are based on controlling heating, ventilation, and air conditioning (HVAC) systems and do not consider the various needs of individuals in a multiperson space. Personal comfort systems (PCS) and personal comfort models (PCM) are popular technologies for achieving personal thermal comfort. This paper presents a thermal environmental collaborative control system (TECCS) that regulates environments at different spatial scales by leveraging the advantages of the HVAC system, PCS, PCM, and PCM-based automatic control to address the issue of individual differences in thermal demand in multiperson environments. The TECCS predicts thermal sensation votes (TSV) by combining facial skin temperature data obtained by an infrared sensor with environmental parameters. Subsequently, it performs the corresponding PCS control and adjusts the air conditioner according to the operating state of the PCS. This study proposes a collaborative control strategy with PCS at the core, enabling communication between thermal state recognition, HVAC system, and PCS. Twenty-eight adult males participated in the experiments testing the TECCS's performance. The results indicate that the TECCS can automatically regulate environments at different spatial scales based on thermal sensation prediction and that the operating state of the PCS can effectively guide air conditioning operations. Compared with constant setpoint control, the TECCS offers the advantage of improving thermal comfort. This paper also proposes future optimization directions based on the research results, focusing on recognition, equipment, and control.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.