Abstract

The emerging concept of Over-the-Air (OtA) computation has shown great potential for achieving resource-efficient data aggregation across large wireless networks. However, current research in this area has been limited to the standard many-to-one topology, where multiple nodes transmit data to a single receiver. In this study, we address the problem of applying OtA computation to scenarios with multiple receivers, and propose a novel communication design that exploits joint precoding and decoding over multiple time slots. To determine the optimal precoding and decoding vectors, we formulate an optimization problem that aims to minimize the mean squared error of the desired computations while satisfying the unbiasedness condition and power constraints. Our proposed multi-slot design is shown to be effective in saving communication resources (e.g., time slots) and achieving smaller estimation errors compared to the baseline approach of separating different receivers over time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call