Abstract
In this paper, we present an over-relaxed variant of the fast iterative shrinkage-thresholding algorithm (FISTA)/the monotone FISTA (MFISTA). FISTA and MFISTA are iterative first-order algorithms, whose convergence rates of the objective function are for an iteration counter k, for the minimization of the sum of a smooth and a nonsmooth convex function. FISTA and MFISTA are composed of the forward–backward splitting step together with a certain computationally efficient shifting step. The stepsize available in the forward–backward splitting step in these algorithms has been limited to a fixed value determined by the Lipschitz constant of the gradient of the smooth function. Examples of the proposed scheme admit variable stepsizes in broader ranges than FISTA/MFISTA, while keeping the same convergence rate . A numerical example in a well-conditioned case demonstrates the effect of the proposed relaxations by showing that the proposed scheme outperforms, in the speed of convergence, the original FISTA and MFISTA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.