Abstract

Near-inertial oscillations associated with downward energy propagation are commonly observed in the upper ocean. Stern (1977) has suggested that these observations may be internal-inertial waves over-reflected from the shear zone at the base of the mixed layer. In this paper we develop a criterion for over-reflection as a function of wavenumber and frequency for a class of shear flows in the mixed layer. By examining the vertical profile of the vertical wave action flux we demonstrate that the source of the over-reflection is the shear at the base of the mixed layer, which is maintained by the wind-induced turbulent Reynolds stress, here parametrized as a body force. The relationship between over-reflection and the wave-induced Lagrangian-mean flow is determined. We also determine a criterion for unstable waves, and show that these are contiguous in wavenumber-frequency space with points of resonant over-reflection. However, the growth rates of these unstable waves are quite small, and in practice unstable waves will be indistinguishable from waves generated by over-reflection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.