Abstract

The results of studies of the over-reflection mechanism for the development of hydrodynamical instability in the accretion disks of close binary stars are presented. The driving of this instability is shown to result in the generation of regular, large-scale, spiral-vortex structures and the development of turbulence in the disk. The derived estimates of the coefficient of turbulent viscosity are in good agreement with the observations, and are able to explain the high rate of angular-momentum transfer and the measured accretion rate. The developed theoretical model is used with the observational data to derive a power-law spectrum for the developed turbulence.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call