Abstract

GDP-D-mannose pyrophosphorylase (GMPase) catalyses the synthesis of GDP-D-mannose and represents the first committed step in the synthesis of ascorbate. In the present study, the GMPase gene of tomato was introduced into potato by Agrobacterium-mediated transformation. Two transgenic lines with higher GMPase expression were selected using qPCR and protein blot analyses. The results showed that the content of L-ascorbic acid (AsA) and the ratio of AsA/DHA (dehydroascorbate) significantly increased in both leaves and tubers of transgenic potato plants. Both pigment content and photosynthetic rate were much higher in transgenic plants than in wild-type plants. Transgenic plants showed a distinguishable change in phenotype from the wild-type plants. Furthermore, transgenic plants showed delayed senescence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.