Abstract

The pathogenetic mechanisms responsible for progressive renal impairment of diabetic nephropathy are still poorly understood, despite its growing incidence. Increasing evidence suggests that growth factors may contribute to the initiation and progressive fibrosis of diabetic nephropathy. In this study, the gene expression and protein distribution of platelet-derived growth factor-A and -B (PDGF-A and PDGF-B) in human diabetic nephropathy were examined. PDGF-A and PDGF-B mRNA levels in surplus renal biopsy tissue from seven patients with overt diabetic nephropathy and six nephrectomy samples were examined using quantitative reverse transcription-polymerase chain reaction (RT-PCR). In addition, each sample was also examined immunohistochemically to quantify and localize peptide expression of each PDGF isoform. Gene expression of PDGF-A and PDGF-B mRNA were increased 22- and 6-fold, respectively, in biopsies from patients with diabetic nephropathy compared with control tissue. Immunostaining also demonstrated increased peptide expression of both PDGF-A and PDGF-B in diabetic nephropathy, with each isoform showing a specific pattern of tissue distribution. The findings of increased gene and protein expression of PDGF in renal biopsies from patients with diabetic nephropathy imply a potential role for this prosclerotic growth factor in the development of the progressive fibrosis that characterizes human diabetic kidney disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.