Abstract

Transgenic cotton plants from several independently-transformed lines expressing a chimeric gene encoding a chloroplast-targeted Mn superoxide dismutase (SOD) from tobacco exhibit a three-fold increase in the total leaf SOD activity, strong Mn SOD activity associated with isolated chloroplasts, and a 30% and 20% increase in ascorbate peroxidase and glutathione reductase activities, respectively. The Mn SOD plants did exhibit a slightly enhanced protection against light-mediated, paraquat-induced cellular damage but only at 0.3 µM paraquat. In addition, photosynthetic rates at 10°C and 15°C were similar to those of controls, and the immediate recovery of photosynthesis after a 35-min exposure to 5°C and full sun was only slightly better than that for wild-type plants. The recovery for longer exposure times was comparable for both genotypes as was the deactivation of the H2O2-sensitive, Calvin-cycle enzyme, stromal fructose 1,6-bisphosphatase (FBPase). Compared to the controls, Mn SOD plant leaves in full sun prior to chilling stress had a lower activation of FBPase, a higher ratio of oxidized to reduced forms of ascorbate, and a higher total glutathione content. After 35 min at 5°C in full sunlight, total glutathione had risen in control leaves to 88% of the Mn SOD plant values, and oxidized to reduced ascorbate ratios were higher for both genotypes. However, an 80% increase in the ratio of oxidized to reduced glutathione occurred for Mn SOD plant leaves with no change for controls. This increased demand on the ascorbate-glutathione cycle is circumstantial evidence that high Mn SOD activity in the chloroplast leads to increased H2O2 pools that could, in some manner, affect photosynthetic recovery after a stress period. We postulate that the pool sizes of reduced ascorbate and glutathione may restrict the ability of the ascorbate-glutathione cycle to compensate for the increased activity of SOD in cotton over-producing mitochondrial Mn SOD in chloroplasts during short-term chilling/high light stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.