Abstract

We investigated the GaInN-based photoelectric transducers (PTs) aiming at the application to optical wireless power transmission systems. A PT device structure with Ga0.9In0.1N multiple-quantum-wells (MQWs) as a light absorption layer was grown on a free-standing GaN substrate by metalorganic chemical vapor deposition and subjected to the device fabrication. The PT performance was evaluated via the two-terminal current-density vs. voltage characteristics taken under a monochromatic light illumination. The fabricated PT devices exhibited a high open-circuit voltage of approximately 2.3 V and a high shunt resistance of 41 kΩcm2, thanks to its good material qualities. In addition, its surface reflection was markedly suppressed by an adoption of a wet surface treatment and an anti-reflection coating, resulting in a high external quantum efficiency of 90% and a high short-circuit current density of 1.4 mAcm−2. Through the above investigation, a high power-conversion efficiency as great as 43.7% was achieved for the GaInN MQW PTs at a light illumination with 390 nm in wavelength and 5 mWcm−2 in optical power density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call