Abstract

Solution processing of Cu(In,Ga)Se2 (CIGS) absorber is a highly promising strategy for a cost-effective CIGS photovoltaic device. However, the device performance of solution-processed CIGS solar cells is still hindered by the severe non-radiative recombination resulting from deep defects and poor crystal quality. Here, a simple and effective precursor film engineering strategy is reported, where Cu-rich (CGI >1) CIGS layer is incorporated into the bottom of the CIGS precursor film. It has been discovered that the incorporation of the Cu-rich CIGS layer greatly improves the absorber crystallinity and reduces the trap state density. Accordingly, more efficient charge generation and charge transfer are realized. As a result of systematic processing optimization, the champion solution-processed CIGS device delivers an improved open-circuit voltage of 656mV, current density of 33.15mAcm-2 , and fill factor of 73.78%, leading to the high efficiency of 16.05%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call