Abstract

AbstractEfficient ternary polymer solar cells (PSCs) are prepared with poly‐[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b:4,5‐b′] dithiophene‐co‐3fluorothieno[3,4‐b]thiophene‐2‐carboxylate] (PTB7‐Th):COi8DFIC as host system and medium bandgap material BDTThIT‐4F as the third component. The power conversion efficiency of PSCs can be increased from 11.47% to 13.08% by incorporating 20 wt% BDTThIT‐4F in acceptors, along with the simultaneously improved three key photovoltaic parameters. The absorption edge of ternary blend films can be tilted up in long wavelength range by incorporating appropriate BDTThIT‐4F, although the bandgap of BDTThIT‐4F is wider than that of COi8DFIC, leading to the extended external quantum efficiency spectra of ternary PSCs. The tilted up absorption edge of blend films should be attributed to the variation of COi8DFIC molecular arrangement, which can be well demonstrated from the transient and steady absorption spectra of blend films with different donors and acceptors. A new ground state bleach signal can be clearly observed in transient absorption spectra of the optimized ternary blend films, which may be due to the varied COi8DFIC molecular energy levels by incorporating BDTThIT‐4F. Meanwhile, the lifetimes on excited states are increased in the ternary blend films, which is beneficial to exciton dissociation for improving the performance of ternary PSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.