Abstract

The ability to combine continuously tunable narrow-band terahertz (THz) generation that can access both the far-infrared and mid-infrared regimes with nanometer-scale spatial resolution is highly promising for identifying underlying light-matter interactions and realizing selective control of rotational or vibrational resonances in nanoparticles or molecules. Here, we report selective difference frequency generation with over 100 THz bandwidth via femtosecond optical pulse shaping. The THz emission is generated at nanoscale junctions at the interface of LaAlO3/SrTiO3 (LAO/STO) that is defined by conductive atomic force microscope lithography, with the potential to perform THz spectroscopy on individual nanoparticles or molecules. Numerical simulation of the time-domain signal facilitates the identification of components that contribute to the THz generation. This ultra-wide-bandwidth tunable nanoscale coherent THz source transforms the LAO/STO interface into a promising platform for integrated lab-on-chip optoelectronic devices with various functionalities.

Highlights

  • Electromagnetic waves at terahertz (THz) frequencies enable resonant interactions with matter through various intrinsic low-energy excitations, thereby revealing information that is related to the lattice, charge, and spin degrees of freedom

  • Several techniques have been proposed for realizing nanometer-scale spatial resolution, such as combining THz emission with scattering-type near-field scanning optical microscopy[9] or scanning tunneling microscopy[10]

  • A positively biased AFM tip is scanned along a line in contact over the LAO surface to locally charge the LAO surface with protons[15,16], which attract electrons to the buried interface to form a conducting nanowire that has a typical width of 10 nm

Read more

Summary

Introduction

Electromagnetic waves at terahertz (THz) frequencies enable resonant interactions with matter through various intrinsic low-energy excitations, thereby revealing information that is related to the lattice, charge, and spin degrees of freedom. In the past few decades, extensive research efforts have focused on developing narrow-band THz sources in both far-infrared (

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.