Abstract
The plasma membrane of all mammalian eggs is surrounded by a thick extracellular coat, the zona pellucida (ZP), whose paramount function is to regulate species-specific fertilization. The mouse egg ZP is composed of only three glycoproteins, mZP1-3, that are synthesized and secreted exclusively by oocytes during their 2-3 week growth phase. Disruption of the mZP3 gene by targeted mutagenesis in embryonic stem (ES) cells yields mice heterozygous (mZP3 +/-) or homozygous (mZP3-/-) for the null mutation. As expected, male mice bearing the null mutation are indistinguishable from wild-type males with respect to viability and fertility. Female mZP3 +/- mice are as fertile as wild-type animals, but their eggs have a thin ZP (approximately 2.7 microns thick) as compared to the ZP (approximately 6.2 microns thick) of eggs from wild-type animals. On the other hand, female mZP3-/- mice are infertile and their eggs lack a ZP. The infertility apparently is due to the lack of a sufficient number of eggs in oviducts of superovulated mZP3-/- females. Light micrographs reveal that development of ovarian follicles is often retarded in mZP3-/- mice as compared to wild-type animals. This is manifested as reduced ovarian weights, reduced numbers of Graafian follicles, and reduced numbers of fully-grown oocytes in mZP3-/- females. It seems likely that the pleiotropic effects of the homozygous null mutation on ovarian development may be due, at least in part, to disruption of intercellular communication between growing oocytes and their surrounding follicle cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.