Abstract

Objective: Most primary human ovarian tumors and peritoneal implants, as well as tumor vascular endothelial cells, express the CD44 family of cell surface proteoglycans, the natural ligand for which is hyaluronic acid (HA). Paclitaxel (PTX) is an effective chemotherapeutic agent that is widely used for the treatment of several cancers, including ovarian cancer. This study aimed to develop a HA-based PTX-loaded nanoparticle system to improve the ovarian cancer therapeutic effects.Methods: PTX-loaded cationic nanostructured lipid nanoparticles (PTX-NLCs) were prepared. HA-PE was then coated onto the PTX-NLCs by electrostatic adsorption to form HA-PTX-NLCs. In vitro tumor cell inhibition efficiency was analyzed on SKOV3 human ovarian cancer cells (SKOV3 cells) and PTX-resistant SKOV3 cells (SKOV3/PTX cells). In vivo anticancer ability was evaluated with mice bearing SKOV3 ovarian cancer cells xenografts.Results: HA-PTX-NLCs had an average diameter of 163 nm, and PTX was incorporated with an efficiency of over 80%. The in vitro viability of SKOV3 cells and SKOV3/PTX cells was obviously inhibited by HA-PTX-NLCs. In the ovarian cancer cells model, significant reduction in tumor growth was observed, whereas the conventional PTX injection group did not achieve significance.Conclusion: This study demonstrated that significantly improved results were obtained by the newly constructed HA-PTX-NLCs, in terms of in vitro and in vivo therapeutic efficacy. These findings strongly support the superiority of HA based nano-system for the PTX delivery, thus enhance the efficacy of ovarian cancer chemotherapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call