Abstract

BackgroundCirculating extracelluar vesicles (EVs) in epithelial ovarian cancer (EOC) patients emanate from multiple cells. These EVs are emerging as a new type of biomarker as they can be obtained by non-invasive approaches. The aim of this study was to investigate circulating EVs from EOC patients and healthy women to evaluate their biological function and potential as diagnostic biomarkers.MethodsA quantitative proteomic analysis (iTRAQ) was applied and performed on 10 EOC patients with advanced stage (stage III–IV) and 10 controls. Twenty EOC patients and 20 controls were applied for validation. The candidate proteins were further validated in another 40-paired cohort to investigate their biomarker potential. Coagulation cascades activation was accessed by determining Factor X activity.ResultsCompared with controls, 200 proteins were upregulated and 208 proteins were downregulated in the EOC group. The most significantly involved pathway is complement and coagulation cascades. ApoE multiplexed with EpCAM, plg, serpinC1 and C1q provide optimal diagnostic information for EOC with AUC = 0.913 (95% confidence interval (CI) =0.848–0.957, p < 0.0001). Level of activated Factor X was significantly higher in EOC group than control (5.35 ± 0.14 vs. 3.69 ± 0.29, p < 0.0001).ConclusionsOur study supports the concept of circulating EVs as a tool for non-invasive diagnosis of ovarian cancer. EVs also play pivotal roles in coagulation process, implying the inherent mechanism of generation of thrombus which often occurred in ovarian cancer patients at late stages.

Highlights

  • Circulating extracelluar vesicles (EVs) in epithelial ovarian cancer (EOC) patients emanate from multiple cells

  • Despite the progress achieved in several studies regarding exosomal contents in cell lines as diagnostic markers, few studies focused on a systemic proteomic analysis and biological function of serum EVs derived from ovarian cancer patients

  • Systematic proteomics analysis of serum EVs derived from ovarian cancer patients can provide a more comprehensive understanding of EV proteins in clinic, and lay the foundation of further studies exploring the mechanism of action of EVs in tumorigenesis, metastasis, relapse and so on

Read more

Summary

Introduction

Circulating extracelluar vesicles (EVs) in epithelial ovarian cancer (EOC) patients emanate from multiple cells. These EVs are emerging as a new type of biomarker as they can be obtained by non-invasive approaches. Zhang et al BMC Cancer (2019) 19:1095 circulating EVs carry complex biological information from their donor cells [6,7,8,9] and can be obtained using non-invasive approaches [2], they are emerging as a new type of cancer biomarker. Despite the progress achieved in several studies regarding exosomal contents in cell lines as diagnostic markers, few studies focused on a systemic proteomic analysis and biological function of serum EVs derived from ovarian cancer patients. Systematic proteomics analysis of serum EVs derived from ovarian cancer patients can provide a more comprehensive understanding of EV proteins in clinic, and lay the foundation of further studies exploring the mechanism of action of EVs in tumorigenesis, metastasis, relapse and so on

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call