Abstract
Evolutionary theory predicts that aging-related fertility declines result from tradeoffs between reproduction and somatic maintenance. Developmental programs for oogenesis also contribute to variation in aging-related reproductive declines among female vertebrates. Documented reproductive aging patterns in female vertebrates, including humans, are consistent with canonical aging patterns determined developmentally and require no special adaptive explanation. Here we discuss patterns of aging-related ovarian decline in diverse female vertebrates, and place human ovarian aging in comparative context. Depletion of finite oocyte stores accompanied by fertility loss occurs in a variety of nonhuman mammals and vertebrates, including short-lived rodents, birds, and some fishes; moreover, postreproductive lifespans of considerable length clearly are not limited to long-lived, social species with well-developed kin networks. We argue for a more rigorous comparative approach for understanding the evolutionary and developmental bases of ovarian aging in vertebrates with a wider range of aging patterns and social structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.