Abstract

We studied the outward currents elicited by an odorous compound, isoamyl acetate, in isolated olfactory receptor neurons of the grass frog under whole-cell perforated-patch voltage-clamp recording. Odorant-induced outward currents were relatively rare, occurring in about 16% of the responding cells. Responses had smaller amplitudes and shorter time courses when compared to the more commonly found odorant-induced inward currents. There was a high correlation between odorant-induced outward current and responses evoked by either 8-(4-chlorophenylthio) adenosine 3':5'-cyclic monophosphate, a membrane-permeant cyclic adenosine monophosphate analog, or 3-isobutyl-1-methylxanthine, a phosphodiesterase inhibitor. The outward current responses to all three substances increased in amplitude when the membrane potential was more negative than -60 mV and decreased in amplitude when the membrane potential was more positive. Responses were still present when the potential was held at -100 mV, indicating that the responses are not the result of a potassium conductance. Removal of external calcium from the perfusion medium abolished the outward currents. Our results indicate that the odorant-induced outward current is a calcium-dependent event that may be mediated by cyclic adenosine monophosphate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call