Abstract

High-performance proton exchange membranes are of great importance for fuel cells. Here, we have synthesized polycarboxylate plasticizer modified MIL-101-Cr-NH2 (PCP-MCN), a kind of hybrid metal−organic framework, which exhibits a superior proton conductivity. PCP-MCN nanoparticles are used as additives to fabricate PCP-MCN/Nafion composite membranes. Microstructures and characteristics of PCP-MCN and these membranes have been extensively investigated. Significant enhancement in proton conduction for PCP-MCN around 55 °C is interestingly found due to the thermal motion of the PCP molecular chains. Robust mechanical properties and higher thermal decomposition temperature of the composite membranes are directly ascribed to strong intermolecular interactions between PCP-MCN and Nafion side chains, i.e. the formation of substantial acid–base pairs (-SO3-⋅⋅⋅+H–NH-), which further improves compatibility between additive and Nafion matrix. At the same humidity and temperature condition, the water uptake of composite membranes significantly increases due to the incorporation of porous additives with abundant functional groups and thus less crystallinity degree in comparison to pristine Nafion. Proton conductivity (σ) over wide ranges of humidities (30 − 100 % RH at 25 °C) and temperatures (30 − 98 °C at 100 % RH) for prepared membranes is measured. The σ in PCP-MCN/Nafion composite membranes is remarkably enhanced, i.e. 0.245 S/cm for PCP-MCN-3wt.%/Nafion is twice that of Nafion membrane at 98 °C and 100 % RH, because of the establishment of well-interconnected proton transport ionic water channels and perhaps faster protonation–deprotonation processes. The composite membranes possess weak humidity-dependence of proton transport and higher water uptake due to excellent water retention ability of PCP-MCN. In particular, when 3 wt.% PCP-MCN was added to Nafion, the power density of a single-cell fabricated with this composite membrane reaches impressively 0.480, 1.098 W/cm2 under 40 % RH, 100 % RH at 60 °C, respectively, guaranteeing it to be a promising proton exchange membrane.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.