Abstract
This work assesses the performance of the recently proposed global natural orbital functional (GNOF) against the charge delocalization error. GNOF provides a good balance between static and dynamic electronic correlations leading to accurate total energies while preserving spin, even for systems with a highly multi-configurational character. Several analyses were applied to the functional, namely, (i) how the charge is distributed in super-systems of two fragments, (ii) the stability of ionization potentials while increasing the system size, and (iii) potential energy curves of a neutral and charged diatomic system. GNOF was found to practically eliminate the charge delocalization error in many of the studied systems or greatly improve the results obtained previously with PNOF7.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.