Abstract

Graphene derivatives and defect-engineered graphenes have attracted the interest of researchers owing to the excellent and tunable properties they exhibit. In this work the optical limiting performance of two defect-engineered boron- and nitrogen-doped reduced graphene oxides is investigated. Both graphenes are found to exhibit exceptional and broadband optical limiting action ranging from 532 to 2200 nm. Their optical limiting efficiency was found to be superior to that of all the other graphene derivatives studied to date, exhibiting a gradually decreasing optical limiting onset, reaching the record low value of ∼0.002 J cm-2 at 2200 nm. The results demonstrate the potential of engineering the defects of such reduced graphene oxides, resulting in very broadband and efficient optical limiting graphene derivatives, showing a promising method to further tailor their optical and optoelectronic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.