Abstract

Resistive random access memories (RRAM) are novel nonvolatile memory technologies, which can be embedded at the core of CMOS, and which could be ideal for the in-memory implementation of deep neural networks. A particularly exciting vision is using them for implementing Binarized Neural Networks (BNNs), a class of deep neural networks with a highly reduced memory footprint. The challenge of resistive memory, however, is that they are prone to device variation, which can lead to bit errors. In this work we show that BNNs can tolerate these bit errors to an outstanding level, through simulations of networks on the MNIST and CIFAR10 tasks. If a standard BNN is used, up to 10−4 bit error rate can be tolerated with little impact on recognition performance on both MNIST and CIFAR10. We then show that by adapting the training procedure to the fact that the BNN will be operated on error-prone hardware, this tolerance can be extended to a bit error rate of 4 × 10−2. The requirements for RRAM are therefore a lot less stringent for BNNs than more traditional applications. We show, based on experimental measurements on a RRAM HfO 2 technology, that this result can allow reduce RRAM programming energy by a factor 30.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.