Abstract
Levees in modern deep-marine systems have been shown to sequester significant amounts of organic carbon due largely to their expanse and high rates of sedimentation. However, relatively few studies have examined organic carbon sequestration in ancient deep-marine leveed slope channel systems. Physical and geochemical analyses of well-exposed levee deposits in the Neoproterozoic Windermere Supergroup in B.C., Canada have shown that intervals of organic-rich (up to 4% TOC) strata correlate with conditions of elevated sea level and primary productivity on the shelf. Organic matter (OM) occurs primarily as micro- to nano-scale carbon adsorbed onto the surface of clay grains and notably occurs mostly in anomalously thick, mud-rich sandstone beds that are interspersed within successions of thin-bedded, comparatively organic-poor turbidites. The concentration of organic carbon in thick beds suggests that even when primary productivity is high it only becomes mobilized in significant quantities into the deep sea by uncommon, outsized turbidity currents. Although markedly more common in organic-rich intervals, thick, organic-rich beds occur also in organic-poor levee deposits, suggesting that the occurrence and frequency of outsized flows may be linked to primary productivity on the shelf. High rates of OM production and fallout would result in rapid accumulation of OM on the seafloor that then binds and provides mechanical strength to the accumulating sediment. Later this overthickened, organic-rich sediment pile becomes gravitationally unstable and ultimately remobilized downslope. These failure events create large, surge-like flows that are considerably thicker than the depth of the slope channels through which they travel. Accordingly, continuous overspill over the channel margins results in the deposition of an anomalously thick, sand- and organic-rich bed. These episodic events not only deplete the outer continental shelf of OM, but apparently also reduces the gradient slope of the local seabed, which then results in the more typical smaller, channel-confined organic-poor turbidity currents. Additionally, the abrupt and single-bed occurrence of OM-rich strata suggests that the buildup of organic-rich strata and seafloor stabilization was rapid but only of limited duration. Significantly, this study suggests that outsized turbidity currents that originate on the outer continental shelf are the primary mechanism for organic matter delivery to the deep sea, at least in pre-vegetation times, and that flow size and frequency, in addition to primary productivity, exerts an important control on the distribution of organic carbon in deep-sea sediments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.