Abstract

HES3 is a basic helix-loop-helix transcription factor that regulates neural stem cell renewal during development. HES3 overexpression is predictive of reduced overall survival in patients with fusion-positive rhabdomyosarcoma, a pediatric cancer that resembles immature and undifferentiated skeletal muscle. However, the mechanisms of HES3 cooperation in fusion-positive rhabdomyosarcoma are unclear and are likely related to her3/HES3's role in neurogenesis. To investigate HES3's function during development, we generated a zebrafish CRISPR/Cas9 null mutation of her3, the zebrafish ortholog of HES3. Loss of her3 is not embryonic lethal and adults exhibit expected Mendelian ratios. Embryonic her3 zebrafish mutants exhibit dysregulated neurog1 expression, a her3 target gene, and the mutant her3 fails to bind the neurog1 promoter sequence. Further, her3 mutants are significantly smaller than wildtype and a subset present with lens defects as adults. Transcriptomic analysis of her3 mutant embryos indicates that genes involved in organ development, such as pctp and grinab, are significantly downregulated. Further, differentially expressed genes in her3 null mutant embryos are enriched for Hox and Sox10 motifs. Several cancer-related gene pathways are impacted, including the inhibition of matrix metalloproteinases. Altogether, this new model is a powerful system to study her3/HES3-mediated neural development and its misappropriation in cancer contexts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.