Abstract

Sparse component analysis (SCA) has been introduced to the output-only modal identification for several years. This paper proposes a new method based on hierarchical Hough transform to extract the modal parameters of mechanical structures. First, the measured system responses are transformed to Time-frequency (TF) domain using Short time Fourier transform (STFT) to get a sparse representation. Then, Hough transform is applied to the TF coefficients hierarchically to identify the hyperplanes and the mixing matrix is calculated. Finally, the modal responses are recovered by using l1 -optimization and inverse STFT. From the recovered modal responses, natural frequencies and damping ratios are extracted. Numerical simulation of a 4 Degree-of-freedom (DOF) spring-mass system verifies the validity of the method. Free vibration of a steel cantilever beam is captured by a high-speed camera and then analyzed by the proposed method. The comparison of the estimated natural frequencies and damping ratios illustrates the good performance of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call