Abstract

Data envelopment analysis (DEA) is a mathematical programming technique for identifying efficient frontiers for peer decision making units (DMUs). The ability of identifying frontier DMUs prior to the DEA calculation is of extreme importance to an effective and efficient DEA computation. In this paper, we present mathematical properties which characterize the inherent relationships between DEA frontier DMUs and output–input ratios. It is shown that top-ranked performance by ratio analysis is a DEA frontier point. This in turn allows identification of membership of frontier DMUs without solving a DEA program. Such finding is useful in streamlining the solution of DEA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.