Abstract

This paper presents the output-constrained control algorithm for non-affine multi-agent systems (MASs) with actuator faults and unknown dead zones. The error transformation method is employed to keep initial connectivity patterns in the non-affine MASs for consensus tracking control. The radial basis function neural networks are utilized to estimate the unknown nonlinear functions. Furthermore, the Nussbaum function is used to overcome partially unknown control direction problem. To address the problem of the constrained control, a state transformation technique is presented. In addition, the fault-tolerant consensus tracking protocol is designed to reduce the effects of actuator faults and dead zones. Furthermore, it is shown that the consensus tracking errors are cooperatively semi-globally uniformly ultimately bounded. Finally, the effectiveness of the proposed approach is illustrated by some simulation results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call