Abstract

Most event-triggered controllers available nowadays are based on static state-feedback controllers. As in many control applications the full state is not available for feedback, it is the objective of this paper to propose event-triggered dynamical output-based controllers. The fact that the controller is based on output feedback instead of state feedback does not allow for straightforward extensions of existing event-triggering mechanisms if a minimum time between two subsequent events, the so-called `minimum inter-event time', has to be guaranteed. Therefore, we will propose an event-triggering mechanism that invokes execution of the control task when the difference between the measured output or the control input of the plant or controller, respectively, and its previously sampled value becomes `large' compared to its current value and an additional threshold. For such event-triggering mechanisms, we will study closed-loop stability and L <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> -performance and provide bounds on the minimum inter-event time. In addition, we will model the event-triggered control system using impulsive systems, which truly describe the behaviour of the event-triggered control system. As a result, we can guarantee stability and performance for improved event-triggered controllers with larger minimum inter-event times than existing results in literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.