Abstract

The control of a knee joint in an active above-knee prosthesis has been designed using the Lyapunov tracking method. A simulation of locomotion was done to prove that the tracking control in output space is a valuable real time control method for artificial legs. The data used for simulation was collected in able-bodied subjects while they walked on a powered treadmill. Human volunteers were braced with an ankle splint (limiting dorsi- and plantar flexion) and with a knee cage (limiting knee movements to the lateral plane). We studied the achieved tracking of the prescribed knee motion, deviations of the thigh movement from the prescribed trajectory, maximal angular deviations from the desired trajectory and the power consumption as functions of a limited maximal knee torque and a damping constant in the knee actuator. We found that the use of output tracking method is suitable for the design of appropriate hardware of an above-knee prosthesis and for real-time control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.