Abstract
Output reversibility involves dynamical systems where for every initial condition and the corresponding output there exists another initial condition such that the output generated by this initial condition is a time-reversed image of the original output with the time running forward. Through a series of necessary and sufficient conditions, we characterize output reversibility in linear single-output discrete-time dynamical systems in terms of the geometric symmetry of its eigenvalue set with respect to the unit circle in the complex plane. Furthermore, we establish that output reversibility of a linear continuous-time system implies output reversibility of its discretization regardless of the sampling rate. Finally, we present a numerical example involving a discretization of a Hamiltonian system that exhibits output reversibility.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.